晕 方 法 探 讨 定

> 存 (北京光学眼镜工业公司)

沙

孝

提 要

本文以具体镜头为例,探讨了确定光瞳形状的方法,着重论述了近年来流行的三次样条插值在某些情 况下存在多余拐点的现象及其原因,最后提供了两种计算方案。

在光学系统设计中,必须根据具体使用条件考虑成象光束的形状和位置。 图 1 中所示 的新曇现象会引起象面边缘照度降低,但可用来减少镜头的外形尺寸并改善成象质量。 光学设计的最后阶段,精确地刻划晕光瞳是十分必要的。本文实例中所列出的点列图 波象差及调制传递函数结果都说明了这一点。

传统方法的弊病

三圆投影是一种应用较早的方法。它很简单,但过于粗糙,多见于自动设计,不适于象 质的精确评价。

椭圆近似法则立足于实际光线的追迹¹¹,可分两步进行:

首先对若干选定的方位角通过一维搜索确定周边上的一组取样点;然后解方程组得到 一个椭圆,使其在最小二乘意义下为最佳。这就是最适椭圆。我们曾用此法沿13个方位定 取样点。表1为我们研制的 f'_{20} 镜头($2\omega = 68^\circ$, D/f' = 1/2)全视场结果。

最适椭圆方程 $\frac{Z^2}{a^2} + \frac{(Y-c)^2}{b^2} = 1$ 中, a = 0.969, b = 0.749, c = -0.0096。用它对取 样点列的 Y 坐标求取 Z 值, 如表 2 所示。最大绝对误差达 0.12。

图 3 为相应曲线的对比情况。

收稿日期: 1980年9月16日

报

1卷

表 1

Y	-0.76	-0.75	-0.72	-0.63	-0.50	-0.27	0.01	0.22	0.40	0.54	0.65	0.72	0.74
Z	0	0.20	0.41	0.62	0.85	0.97	0.96	0.84	0.70	0.55	0.38	0.20	0

表 2

实际结果	0	0.20	0.41	0,62	0,85	0.97	0.96	0,84	0.70	0.55	0,38	0.20	0
椭圆近似	无	0.15	0.31	0.54	0.73	0.91	0.97	0.92	0,81	0.66	0.46	0.22	无
绝对误差		0.05	0.10	0.08	0.12	0.06	0.01	0.08	0.11	0.11	0.08	0.02	

二、样条函数方法

我们希望构造一条曲线,使它点点通过晕瞳周边上的一组取样点,并满足一定条件。因 而我们自然想到近年来流行的三次样条函数。譬如,为确定一个具有连续二阶导数的分段 三次多项式函数 *Z* = *Z*(*Y*),可使用公式

 $[S_1(Y), S_2(Y), S_3(Y), S_4(Y)] = [1, Y, Y^2, Y^3]Q$

其中四阶方阵

T

C

图 2

Po

4.3.4 Complete Verified Ver
$Q = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 3 & -2 & -1 \\ 2 & -2 & 1 & 1 \end{bmatrix}^{\circ}$
于是可得厄密特插值基函数
$S_1(Y) = 2Y^3 - 3Y^2 + 1,$
$S_2(Y) = -2Y^3 + 3Y^3$,
$S_{3}(Y) = Y(1-Y)^{2}$,
• $S_4(Y) = Y^2(Y-1)_o$
令 $h_i = Y_i - Y_{i-1}, (i=2, \dots, 13), 则在区间[Y_{i-1}, Y_i]上$
$Z(Y) = Z_{i-1}S_1(R_i) + Z_iS_2(R_i)$
$+h_i[Z'_{i-1}S_3(R_i)+Z'_iS_4(R_i)],$
其中 $R_i = (Y - Y_{i-1})/(Y_i - Y_{i-1}), i = 2, \dots, 13_{\circ}$ 而 ⁰
导数 Z'可由三个对角线型方程组求解(附以必要的端
点条件),也有不需解方程组的 ^[2] 。
$\alpha_i Z'_{i-1} + 2Z'_i + \beta_i Z'_{i+1} = b_i (i=2, \dots, 12),$
其中 $\alpha_i = h_{i+1}/(h_i + h_{i+1})$,
$\beta_i = 1 - \alpha_i$
$b_i = 3[\alpha_i(Z_i - Z_{i-1})/h_i + \beta_i(Z_{i+1} - Z_i)/h_{i+1}]_o$

我们曾用此法为许多镜头定晕,普遍情况良好,但

个别时候也出现弊病。仍以前述镜头为例,用此法求得13个节点处导数Z'列表如下:

表 3

_	_											T	
Z'	33.84	25.00	-1.62	3.58	0.65	0.30	-0.35	-0.68	-0.77	-1.61	-0.83	-7.22	-10.62

在第3与第11点,切线斜率变化趋势出现逆转,不再单调减小。于是晕瞳周边产生了 两处局部的多余波动。这种现象称为三次样条函数产生多余拐点。

三、多余拐点问题

设平面内共有n个节点 $P_i(Y_i, Z_i), i=1, \dots, n_o$ 它们之间的二次差恒不为零,

 $\Delta^2 Z_i = (Z_{i+1} - Z_i) / (Y_{i+1} - Y_i) - (Z_i - Z_{i-1}) / (Y_i - Y_{i-1}) \neq 0,$

其中 *i*=2, …, *n*-1。二次差之间的变号数为 *V*。数学上可以证明, 如果我们构造的一条 二阶导数连续曲线的拐点数大于 *V*, 则它必有多余拐点。一般系统晕瞳上点列的二次差序 列没有变号, 故曲线不应有拐点。

产生多余拐点的原因很多, 譬如具体解法不当, 以及三次样条曲线在某些情况下, 缺乏 保凸性质, 即使换用不同的端点条件, 可以使拐点位置发生漂移, 但总不能消除这类拐点。

笔者认为,合理描写晕瞳周边的途径有二:其一,从实际精度要求出发,构造一阶导数 连续曲线;其二,从严格的数学论证出发,选用其他确保不含拐点的曲线弧拼接。

图 4

四、Akima 方法

又予以进一步论述^[33]。它对我们解决定晕问题 颇有启发。 譬如,晕瞳周边的五个取样点为 P₁、P₂、

 P_{3} 、 P_{4} 与 P_{5} 。图 5 中折线各段斜率可表示为 $m_{i}=(Z_{i+1}-Z_{i})/(Y_{i+1}-Y_{i}), i=1, 2, 3, 4,$ 经推演变形得到周边曲线在 P_{3} 处切线斜率为

$$t_3 = \frac{|m_4 - m_3| m_2 + |m_2 - m_1| m_3}{|m_4 - m_3| + |m_2 - m_1|}$$

亦即切线斜率为相邻线段斜率的加权平均值。 由于 $\{m_2, m_3\}_{\min} \leq t_3 \leq \{m_2, m_3\}_{\max}$,故这种处 理对切线的稳定旋转十分有利。如把图 5 中的 折线延伸至 $P_6 \gtrsim P_7$,则可得

 $m_5 = 2m_4 - m_3$ $B = 2m_5 - m_{4o}$

于是就能确定端点与次端点的导数 t₅ 与 t₄。用此法可得出 f₂₀ 镜头晕瞳周边上 13 个点的导数(见表 4)。

表 4

¢'	41.69	9.67	2.60	1.80	0.98	0.13	-0.40	-0.65	-0.83	-1.16	-1.64	-2.59	-12.33

所有节点处切线的斜率确定以后,很容易反解出各三次多项式的系数,进而进行分段插值。这个方法具有以下优点: (1)异常简单; (2)计算稳定可靠; (3)占用电子计算机的内存 少; (4)有效地克服了曲线的摆动与扭转。笔者曾用它为不少镜头定晕且用二阶导数条件检 验,未发现多余拐点。

五、单拐曲线函数概述

给定点(Y_0, Z_0), (Y_1, Z_1), (Y_2, Z_2)及参数 m_0, q_0 , 其中 $Y_0 < Y_1 < Y_2$, 二次差 $\Delta = T_2 - T_1 = \frac{Z_2 - Z_1}{Y_2 - Y_1} - \frac{Z_1 - Z_0}{Y_1 - Y_0} \neq 0,$

且 $(m_0 - T_1)q_0 < 0$ 及 $(m_0 - T_1) \Delta < 0$ 。总可以找到一条单拐曲线弧^[4],过点 (Y_0, Z_0) , (Y_1, Z_1) 且在它们之间没有拐点。这个事实的证明是构造性的,但公式较复杂,从略。逐段拼接即得 周边曲线。

六、实 例

下面的点列图是用我们的 GOTF 程序打印的,符号含义如下:

j

图 8

0.6

0.0

-0.6

7.7

* 表示落了一个点; 数字2至9对应相应点数; 字母A至Y对应10至34点; Z表示 35点以上; 点·表示主光线落点位置。

图 6 为使用最适椭圆得到的 f₂₀ 镜头点列图 (全视场、D 光);图 7 为单拐曲线弧所得的 点列图。前者失真明显,沿两个方位的尺寸均比后者大 0.5 倍,能量分布状态也有区别。

图 8 为 f₂₈ 镜头波差分布图。实线为用 Akima 方法确定的周边, 虚线为最适(半) 椭圆。 后者回避了波差大的一部分面元, 造成假象。

_	_	 _	-

方位	MTÉ		c/mm											
		5	10	15	20	25	30	35	40	45	50			
切向	椭圆近似	0.35	0.38	0.38	0.21	0.38	0.25	0.24	0.23	0.18	0.27			
	Akima	0.32	0.40	0.40	0.33	0.33	0.22	0.21	0,23	0.26	0.21			
	绝对误差	0,03	0.02	0.02	0.12	0.05	0.03	0.03	0.00	0.08	0.06			
	椭圆近似	0.55	0.51	0.41	0.20	0.15	0.12	0.18	0.25	0.18	0.13			
径向	Akima	0.64	0.47	0.39	0.22	0.09	0.12	0.19	0.23	0.20	0.18			
	绝对误差	0.09	0.04	0.02	0.02	0.06	0.00	0.01	0.02	0.02	0.05			

由于传递函数计算中各环节误差的交互作用,特别是因为三角函数的周期性,各种定晕 方法对 MTF 精度的影响并不是直接的。表5为一个广角物镜不同定晕方法的计算结果对 比。这里,切向最大单点误差为0.12,十个空间频率的平均误差为0.04;径向最大单点误差 为0.09,平均误差为0.03。数值表明 MTF 对光瞳形状的差异反应比较灵敏。我们曾对几 个常用的电影摄影物镜进行不同定晕方法的对比分析,发现全视场两个方位 MTF 的平均 误差在 50 c/mm 以内约为0.02~0.03; 100 c/mm 以内为0.05 左右。

对 AD710633 中所示镜头,用我们的 POTF 程序与 Rochester 大学的 TA 程序进行了 对比。结果表明,最大单点误差为 0.042;轴上点平均误差为 0.022;轴外 ω=10.4°时,切 向平均误差为 0.008, 径向为 0.010;ω=14.7°时,切向平均误差为 0.012,径向为 0.010。 对于视场角特别大(2α≥80°)的航测物镜,进行了计算对比,取得比较好的结果。

参考文献

[1] J. MacDonald; Opt. Acta, 1971, 18, No. 4 (Apr), 269.

[2] 齐东旭; 《吉林大学学报》自然科学版, 1976, No. 2 (Jul), 36.

[3] H. Akima; J. Association for Computer Mach., 1970, 17, No. 4 (Apr), 589.

[4] 沪东造船厂,山东大学船体数学放样研究组;《应用数学学报》,1977, No. 2 (May),1.

An approach to the method of vignetting determination

Sha Cunxiao

(The Beijing Optical and Eyewear Industrial Corporation)

(Recsived 16 September 1980)

Abstract

In this article a specific lens is taken as example to approach the method of the determination of pupil shape, to stress under certain circumstances the existence of surplus inflection points and its cause using the prevalent cubic interpolating splins recently, and finally to put forward two schemes subjected to tests for reference.